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ABSTRACT
Hypothyroidism is associated with increased cardiovascular mor-

bidity, which cannot be fully explained by the atherogenic lipid profile
observed in these patients. We have previously found elevated levels
of the cardiovascular risk factor, plasma total homocysteine (tHcy), in
hypothyroidism.

We conducted a longitudinal study on 17 patients who had under-
gone total thyroidectomy for thyroid cancer. During 6 weeks of dis-
continued T4 substitution before radioscintigraphy (phase I), they
attained a hypothyroid state, which was reversed by resupplemen-
tation (phase II). Plasma tHcy, serum creatinine, serum and red blood
cell folate, serum cobalamin, and serum cholesterol were determined
at 2-week intervals throughout phases I and II.

There was a progressive and parallel increase in tHcy (mean, 27%),

serum creatinine (37%), and serum cholesterol (100%) during phase
I, and these values returned to the original level within 4–6 weeks
after reinitiating T4 therapy. Serum and red blood cell folate levels
showed only minor, but statistically significant, changes. In a biva-
riate model, serum creatinine and serum cholesterol were strongly
associated with the changes observed in tHcy during short term
hypothyroidism.

In conclusion, we found a transient increase in both plasma tHcy
and serum cholesterol during short term iatrogenic hypothyroidism,
and the tHcy response is probably mainly explained by concurrent
changes in renal function. The increase in both plasma tHcy and
serum cholesterol may confer increased cardiovascular risk in hypo-
thyroid patients. (J Clin Endocrinol Metab 85: 1049–1053, 2000)

AUTOPSY STUDIES (1) as well as animal experiments (2,
3) have demonstrated accelerated atherogenesis in

hypothyroidism, whereas hyperthyroidism or thyroid hor-
mone supplementation has a protective effect. Progression of
angiographically verified coronary artery stenosis is related
to serum T3 levels in euthyroid subjects (4) and seems to be
prevented by adequate thyroid hormone replacement in hy-
pothyroid patients (5). Thus, there is compelling evidence
that thyroid status affects the progression of atherosclerosis,
but the mechanism is not fully understood.

Hypothyroidism is associated with high cholesterol and
lipoprotein levels, which are normalized after thyroid hor-
mone replacement (6–8). The atherogenic lipid profile in
particular, but also other abnormalities (9–11), have been
suggested to be responsible for the increased cardiovascular
morbidity in hypothyroid patients (6–8).

Total homocysteine (tHcy) in plasma has recently been
proposed as an independent risk factor for occlusive cardio-
vascular disease (12, 13). The plasma level is affected by
several life-style and physiological factors and is elevated
under conditions of impaired folate and cobalamin status
and in renal failure (12).

We recently reported that plasma tHcy is influenced by

thyroid status. Hypothyroid patients had higher plasma
tHcy levels than healthy controls and hyperthyroid patients,
but a tendency toward low tHcy in hyperthyroidism did not
reach statistical significance (14). The heterogeneity of the
study population with respect to age, vitamin status, and
severity of disease (14) probably reduced the power of this
cross-sectional investigation.

In the present work we further investigated the effect of
thyroid status on alterations in plasma tHcy levels. We car-
ried out a longitudinal investigation of patients who had
undergone total thyroidectomy for thyroid cancer, and who
attained an acute iatrogenic hypothyroid state during a tran-
sient stop of T4 supplementation before diagnostic 131I
scintigraphy.

Subjects and Methods
Patients and protocol

The patients included had undergone total thyroidectomy due to
thyroid cancer. Seventeen consecutive patients who discontinued thy-
roid hormone supplementation before diagnostic 131I scintigraphy were
included. Their mean age was 49 yr (range, 28–78 yr), and 35% were
males (Table 1). T4 supplementation was stopped for 5–6 weeks and was
resumed 2 days after 131I scintigraphy, with a dose escalation over 2–3
weeks. All patients gave their informed consent to participate in the
study. Fasting blood samples were drawn immediately before discon-
tinuing supplementation (designated time point 26 weeks) and there-
after at 2-week intervals (24 and 22 weeks) until scintigraphy was
carried out (time zero). This period, from 26 to 0 weeks, is referred to
as phase I. After resumption of T4 supplementation, fasting blood sam-
ples were drawn at 2-week intervals (2, 4, 6, and 8 to 10 weeks) for up
to 10 weeks. The period from 0 to 10 weeks is referred to as phase II. We
did not obtain complete blood sampling from all patients. Nine patients
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were included from the time the supplementation was discontinued,
whereas 16 of the patients participated from the time of restart of T4
replacement therapy (Table 1).

Biochemical methods

The blood samples for tHcy determination [10 mL in ethylenedi-
amine tetraacetate Vacutainer tubes (Becton Dickinson Vacutainer
Systems Europe, Meylan, France)] were centrifuged within 30 min at
3000 3 g for 5 min before analysis. Plasma tHcy levels were deter-
mined by a method based on high pressure liquid chromatography
and fluorescence detection (15). The between-day precision (coeffi-
cient of variation) of the method is less than 3%.

Serum cobalamin was determined with a microparticle enzyme in-
trinsic factor assay run on an IMx system from Abbott Laboratories
(Abbott Park, IL). Serum and red blood cell (RBC) folate were assayed
using the Quantaphase folate radioassay produced by Bio-Rad Labo-
ratories, Inc. (Hercules, CA). Cholesterol and creatinine were deter-
mined using the Technicon Chem 1 system (Technicon Instruments
Corp., Tarrytown, NY).

TSH and T3 in serum were measured using the AutoDELFIA hTSH
Ultra kit and AUTODELFIA T3 kit from Wallac, Inc. (Turku, Finland).
The precision of the TSH assay, expressed as between-assay coefficient
of variation, was 4.9% for samples between 0.5–8.3 mIU/L; that for the
T3 assay was below 4.5% for values between 1.0–4.0 nmol/L.

Statistical analyses

To investigate the various determinants of plasma tHcy as well as the
change in the tHcy level during the study period, analyses of covariance
using an unbalanced repeated measure design allowing for missing
values, were used (5V module in BMDP) (16). Analyses were performed
separately for phase I and phase II, with time zero being the last time
point of phase I and the first time point of phase II.

The change in tHcy over time was represented by a linear time trend,
coded as 0, 1, 2, and 3 in phase I and 0, 1, 2, 3, 4, and 5 in phase II; thus,
the estimated coefficients represent the change in tHcy relative to that
at the previous visit. A quadratic or curve-linear term was also tested in
some models. Because it did not improve the models, it is not included
in the data presented.

In the various models, several structural forms of the within-subject
covariance matrix were tested. Because the results showed minor vari-
ation with different covariance structures, and compound symmetry
tended to be the most appropriate according to Akaike’s information
criterion (17), the latter structure was applied in all of the models pre-

sented. The default Newton-Raphson algorithm was used to compute
maximum likelihood, because other algorithms gave similar results.

Results
Thyroid hormone status

After discontinuation of T4 supplementation for 6 weeks,
all 17 subjects attained a hypothyroid state, as evidenced by
a TSH level higher than 50 mIU/L and low T3 levels (Fig. 1).

Total plasma homocysteine

Plasma tHcy increased gradually from a median concen-
tration of 10.9 to 13.1 mmol/L (mean, 27%) during 6 weeks
of discontinued T4 supplementation, i.e. phase I. After T4
administration was resumed, tHcy slowly declined and
reached the original level within 4–6 weeks (Fig. 2). The
changes both during phases I and II were highly significant
(P , 0.001; Table 2).

Vitamin status, creatinine, and cholesterol

There was a moderate decrease in serum and RBC folate
after T4 supplementation was discontinued (phase I), which
reached statistical significance for RBC folate (P , 0.02). After
restart of T4 supplementation (phase II), both RBC and serum
folate increased (P , 0.01). The serum cobalamin showed a
different response characterized by stable levels during
phase I and a significant (P , 0.001) decrease during phase
II (Fig. 2 and Table 2).

Both serum creatinine and total cholesterol increased dur-
ing phase I (P , 0.001) and decreased during phase II (P ,
0.001). Notably, the patterns of these changes closely fol-
lowed those in plasma tHcy (Fig. 2 and Table 2).

Covariations

The changes in tHcy over time during phases I and II were
assessed before and after adjustment for potential covariates,

TABLE 1. Demography, observation period, and blood indices immediately before T4 resupplementation (time zero)

Patient
no.

Sex
(M/F)

Age
(yr)

Observation
period

(weeks)a

Plasma
tHcy

(mmol/L)

Serum
creatinine
(mmol/L)

Serum
cholesterol
(mmol/L)

Serum
folate

(nmol/L)

RBC
folate

(nmol/L)

Serum
cobalamin
(pmol/L)

1 F 78 26 to 16 12.9 93 12.2 9.6 307 299
2 F 49 0 to 18 13.1 98 9.3 13.5 494 627
3 F 55 22 to 18 14.3 124 13.4 7.9 309 498
4 M 28 0 to 14 9.8 129 8.1 11.0 293 626
5 F 49 0 to 16 13.3 91 8.8 6.3 182 257
6 M 42 26 to 110 21.8 133 9.8 5.1 298 570
7 F 78 26 to 110 10.2 98 11.7 12.0 288 635
8 F 32 24 to 110 22.5 108 9.4 4.2 187 278
9 M 53 24 to 110 9.7 108 7.8 8.2 428 507

10 F 44 24 to 110 12.8 100 11.7 10.6 433 578
11 F 45 0 to 18 14.3 127 8.6 8.0 306 329
12 F 38 26 to 110 40.7 130 10.2 6.2 503 274
13 F 32 26 to 18 10.0 101 5.0 13.3 359 339
14 M 40 26 to 10 13.0 117 7.7 6.8 416 597
15 F 66 0 to 110 18.5 110 12.9 9.8 523 382
16 M 50 26 to 18 13.1 128 9.9 9.0 352 414
17 M 71 26 to 18 13.0 111 9.5 9.7 325 518

Median
(10–90th percentile)

49 13.1 110 9.5 9.0 325 498
32–74 9.9–22.0 96–129 7.8–12.5 5.8–12.5 248–498 276–626

a Given in weeks before (2) and after (1) start (at time zero) of T4 resupplementation.
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which include creatinine, vitamins, and serum cholesterol.
Adjustment for creatinine abolished the change in tHcy in
phase I (P 5 0.92), whereas it was only attenuated in phase
II (P 5 0.001). After adjustment for RBC or serum folates or
cobalamin in bivariate models, the tHcy changes were still
highly significant in phases I and II (P # 0.005). In contrast,
adjustment for cholesterol had strong effects in both phases
(P 5 0.13 and 0.14, respectively). These data are in accordance
with a strong association between the values for tHcy and
creatinine in phases I and II (P 5 0.001) and between tHcy
and cholesterol, particularly in phase II (P 5 0.001). Only
weak associations between tHcy and the vitamins (P $ 0.06)
were observed.

Discussion

The short term, transient hypothyroid state obtained when
discontinuing the T4 supplementation before diagnostic scin-
tigraphy represents a unique model for studying the meta-
bolic effects of thyroid hormone in man. The longitudinal
design ensures high statistical power, because the interindi-
vidual variations are minimized. The data are somewhat
weakened by incomplete sample series due to logistic
problems.

The main finding is a gradual increase in plasma tHcy
during development of the hypothyroid state and a return of
the tHcy level when T4 supplementation was resumed. No-
tably, the increase (phase I) and decrease (phase II) take place
over weeks. A similar time course was observed for serum
creatinine and total cholesterol. The kinetics of these changes
might reflect the turnover rate of T4, which has a half-life of
about 7 days in humans (18). This is supported by comparing
tHcy and thyroid hormone kinetics during phases I and II
(Figs. 1 and 2).

The results of the present study are in accordance with the
recent observation that plasma tHcy is high in hypothyroid
patients and tends to be low in hyperthyroid patients (14).
The apparent close relation between the plasma tHcy and
thyroid hormone levels during phases I and II indicates a
hormone effect on homocysteine metabolism, distribution, or
clearance. A similar argument can be made for the creatinine
and cholesterol responses.

Reversible elevation of serum creatinine has previously

FIG. 1. Thyroid hormone status during iatrogenic hypothyroidism.
Levels of TSH (closed circles) and T3 (open circles) were recorded
during discontinuation of T4 supplementation (phase I) and after
restart of T4 therapy (phase II). The times on the x-axis are 26, 24,
22 to 21, 0, 1 to 2, 4 to 6, and 8 to 10 weeks. Data are given as medians,
and the shaded areas indicate 25th and 75th percentiles.

FIG. 2. Changes in tHcy and other blood indices during iatrogenic
hypothyroidism. The concentrations of tHcy, serum creatinine
(Creat), serum total cholesterol (Chol), serum folate, RBC folate, and
serum cobalamin (Cbl) were determined during discontinuation of T4
supplementation (phase I) and after restarting T4 therapy (phase II).
The levels are calculated as a percentage of the individual values
determined at the time of resumption of T4 therapy, which is set as
100%. The times on the x-axis are 26, 24, 22 to 21, 0, 1 to 2, 4 to 6,
and 8 to 10 weeks. Data are given as medians, and the shaded areas
indicate 25th and 75th percentiles.

TABLE 2. Changes in tHcy and other blood indexes measured for 6 weeks of discontinuation (phase I) and for 6–8 weeks after
resumption of T4 supplementation (phase II) in 17 patients who had undergone total thyroidectomy for thyroid cancer

Parameter
Phase I Phase II

Intercept Coefficient P value Intercept Coefficient P value

tHcy (mmol/L) 10.3 1.75 ,0.001 15.9 21.57 ,0.001
Serum folate (nmol/L) 10.0 20.33 0.20 8.81 0.40 0.007
RBC folate (nmol/L) 435 224.5 0.018 365 24.9 ,0.001
Cobalamin (pmol/L) 453 5.07 0.62 446 222.6 ,0.001
Creatinine (mmol/L) 80.4 10.6 ,0.001 110 24.87 ,0.001
Total cholesterol (mmol/L) 5.23 1.60 ,0.001 9.72 21.11 ,0.001

The parameters were measured every second week. The intercept refers to the estimated level at the start of each phase; the coefficient is
the estimated change per 2-week interval; the P value refers to test for linear trend. Analysis of covariance, using an unbalanced repeated
measured design allowing for missing values, was used (16). tHcy, Total homocysteine in plasma.
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been reported during discontinuation and resumption of T4
supplementation (19). We observed a close relation between
plasma tHcy and serum creatinine in iatrogenic hypothy-
roidism. Both the tHcy and creatinine responses can be ex-
plained by the hypodynamic circulation in hypothyroidism
(20). Thyroid hormones are cardiotonic agents, which in-
crease cardiac output while lowering systemic vascular re-
sistance (21, 22), resulting in increased renal blood flow (20).
This, in turn, may increase the glomerular filtration rate,
which is related to serum creatinine (23), but also closely
associated with plasma tHcy (24, 25). The mechanism behind
renal homocysteine clearance is debated (26), but may be
explained by an important role of renal metabolism in the
overall homocysteine homeostasis (27).

An alternative explanation for the concurrent elevation of
plasma tHcy and serum creatinine during iatrogenic hypo-
thyroidism is the formation of homocysteine in conjunction
with creatine-creatinine synthesis, which is related to muscle
mass (28). However, creatinine formation was not increased
in hypothyroid patients in one study (29). Furthermore, sig-
nificant changes in muscle mass during the short study pe-
riod are unlikely. Taken together, these data give no support
to the idea (14) that increased tHcy during hypothyroidism
is due to enhanced homocysteine production.

We observed a moderate transient decline in both serum
and RBC folate during discontinuation of T4 supplementa-
tion. This is in agreement with the finding published previ-
ously by us (14) and others (30), demonstrating elevated
serum folate in hyperthyroidism and low levels in hypothy-
roidism. The folate response could be related to direct effect
of thyroid hormones on folate-metabolizing enzymes, in-
cluding methylenetetrahydrofolate reductase (31). Folate sta-
tus has been established as a major determinant of tHcy level
(32). However, in the present study the changes in vitamin
levels are minor and show only weak, nonsignificant, cor-
relations with tHcy. This suggests that impaired folate status
is not responsible for the transient hyperhomocysteinemia
during discontinuation of T4 supplementation.

The mechanism and implication of the significant drop in
serum cobalamin during the phase II of the observation pe-
riod are uncertain. It may reflect cobalamin depletion caused
by, but lagging behind, the iatrogenic hypothyroidism due to
the long half-life of tissue cobalamin (33). Others have shown
that cobalamin levels are reduced (30) or unchanged during
hypothyroidism (30, 34).

In line with previous studies (35–37), serum cholesterol
levels increased during the development of hypothyroidism
and decreased to control values after 6 weeks of replacement
therapy. Notably, cholesterol showed covariation with both
tHcy and creatinine. This responsiveness suggests that thy-
roid hormones influence cholesterol metabolism or disposi-
tion (38). There is one report on homocysteine effects on
cholesterol production and secretion (39). This may contrib-
ute to the covariation between cholesterol and homocysteine
observed in the present study, but also to the moderate
associations observed in some epidemiological studies
(40–42).

In conclusion, plasma tHcy increased during well defined,
short term hypothyroidism, and there was a concurrent,
transient increase in both serum creatinine and serum cho-

lesterol. Increased serum creatinine levels probably reflect a
reduced glomerular filtration rate, which, in turn, is linked
to impaired renal homocysteine clearance and hyperhomo-
cysteinemia. The medical implication of the concurrent in-
creases in serum cholesterol and tHcy levels is a possible
strong interactive effect between these two cardiovascular
risk factors (43), which may explain in part the accelerated
atherosclerosis in hypothyroid patients.
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